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People everywhere are developing multi-window,
integrated programming environments for their favorite
computers and languages. This paper describes the Mesa
programming facilities of the Xerox Development
Environment (XDE). It is interesting for several reasons.
It has existed in something similar to its current form for
about 5 years. It has more than 500 users, many
interacting with it 8 or more hours a day. Several million
lines of code have been written by these users, including
large, multi-author systems.

Previous papers have dealt with the Mesa language
[Geschke77, Mitchell79], the operating system [Redell79,
Lampson80] and the processor architecture on which it
runs [Johnsson82, Sweet82]. This paper describes the
programming environment: the user illusion, the set of
programming tools, and the facilities available for
augmenting the environment. Section 2 gives a short
history of the environment, including some of our
original design goals. Section 3 describes the current
state of the user interface and discusses a few of the
schemes that were tried and discarded. Section 4
describes some of the program development tools
available and discusses how features of the language have
influenced their design, and indeed influenced what tools
are in the set. Section 5 describes other tools that,
although valuable to the programming task, are largely
language independent. Section 6 talks about how easy
it is to make additions to the system, and gives examples
of user additions-some that modify the environment
and some that simply provide new tools. Section 7
discusses what we feel are major successes and what we
feel needs to be done in the future.
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2. History and Philosophy

Much of the early history and design motivation
behind the Mesa language project was reported in Early
Experience with Mesa [Geschke77]. This section deals
with the history and design goals of the programmer’s
environment that grew up around the language. This
paper principally concerns the facilities on individual
programmers’ workstations, although a good bit of their
power comes from being part of a larger network
environment. In addition to the workstations, this
network contains a number of server machines. Some
servers are used for central storage of files, some for
printing, some for communications with the outside
world, and some provide small specialized services. The
individual workstation, nonetheless, provides the majority
of a programmer’s computing power.

2.1 Chronology

Mesa was first implemented on the Alto [Thacker79]
in 1976. The development environment was the Alto
operating system [Lampson79] whose user interface was
the Executive, a BCPL program that operated much like
the time-sharing executives of the day. When one
invoked a tool, such as the compiler, it ran in the entire
machine (along with pieces of the operating system), and
when it was finished, the Executive was reloaded to
process the next command. There were provisions for
chaining together commands by means of disk files with
distinguished names.

The Mesa debugger was patterned after the BCPL
debugger to the extent that it used the same world swap
principle. When the debugger was invoked, the contents
of memory were written to a disk file, the client outload
file, and then memory was loaded from another file, the
debugger outload file. The net result was that you were
now running inside the debugger and could examine and
modify the client world by reading and writing the client
outload file. The debugger had the ability to set
breakpoints and to display program data in a format
determined by the type of the data. It had a crude ability
to call procedures in the client code. The debugger had
multiple windows patterned after those of Smalltalk
[Kay76]. One, a typescript window, was used for
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interaction with the debugger executive for setting
breakpoints, examining data, etc., and another was used
to show the source context at breakpoints.

In 1977 (Mesa 3.0), we introduced strong intermodule
type checking by means of interfaces and the Binder.
The ability to check procedure parameters at compile or
load time was a clear win. It often took a while to
produce a consistent version of a large system, but once
it could be loaded, it would usually run well enough that
the programmer could start looking for logic errors. The
early days of binding are described in some detail in a
paper by Lauer and Satterthwaite [Lauer79].

In 1978 (Mesa 4.0), we added monitors and condition
variables to the language to facilitate parallel com-
putation. These features were of particular use in
implementing the multi-level communications protocols
in our internet environment.

By April 1979 (Mesa 5.0), the window package was
much more integrated into the debugger. Breakpoints
were set by pointing to the source, and text could be
copied from one window into another to avoid
unnecessary typing. The source window was readonly,
however; there was no way to edit programs from within
the debugger.

Version 6.0 of Mesa (October 1980) was the first
that could reasonably be called an integrated
environment. Programmers tended to do most of their
development work inside the debugger. There were
several advantages to this: the world swap discipline
meant that the debugger world persisted across the
running of applications; one could edit in several
windows at once, and use a file transfer window to get
needed files from remote servers. There were, however,
still applications that required the programmer to exit
from the debugger and talk to the Alto executive.

The major shortcoming of the Alto was the lack of
virtual memory, so in the late 70’s several machines were
developed to replace the Alto and the Pilot operating
system [Redell79] was written to replace the Alto
operating system. The machines included the Dolphin
(1978), the Dorado (1979), and the Dandelion (1980).
The Dandelion is the machine on which the Xerox 8000
Series products are based (including Star and Network
Services). It is also the machine on which the current
Mesa development environment runs. For the sort of
applications that it typically runs, a Dandelion has
computational power somewhere between a VAX 750
and a VAX 780.

The first Pilot based debugger looked a lot like the
Alto one, even sharing a lot of source code for the
debugger proper. The major addition was a new
Executive window. This window was the access to a
program that was a transliteration of the Alto Executive.
It allowed the user to run the more batch-like applications
such as the compiler and binder, and included such
niceties as command file expansion. Many of the Alto
applications were rewritten to be run from this executive.
The major difference was that the world was not reloaded
after an application finished; an application had to be
more careful about freeing up any resources it had
acquired. There was still a one-thing-at-a-time mentality.

For example, the compiler turned off the display when
running in order to get more cycles.

Various experiments were made where tools would
fork a (pseudo)parallel process to do their actual work.
This met with limited success since some of the system
resources, notably the file system, were not particularly
reentrant. As a result, the file system was replaced
[Reid83], and by April 1982 (Mesa 8.0), there was a truly
integrated environment that allowed parallel execution of
most of the tools. To the typical programmer using the
environment, this was a quantum leap forward. I suspect
that coffee consumption went down, since there was no
longer the need to find something else to do while the
compiler was running; you could read your mail, or edit
the next program to be compiled.

In the next two years, the underpinnings of the
system were largely rewritten (often with little visibility
to the applications running on top). The display
management was rewritten to improve performance and
further work was done to make concurrent execution of
applications more robust. The virtual memory and low
level file management of Pilot were rewritten and the
instruction set of the Dandelion (implemented by RAM
based microcode) was reworked [Sweet82]. Of course,
the collection of tools increased in number.

2.2 Design Goals

There were a number of goals and features of the
language effort that had an impact on how the
environment was structured. From the beginning, our
goal was to allow development of large complex software
projects with sufficient performance to be usable in a
production environment.

l Mesa supports modular programming with
strong compile-time type checking. The strict
type checking necessitated the creation of
several tools in the environment for helping to
maintain consistency.

l Procedures are first class values; they can be
passed as parameters or stored in data structures.
This aids object oriented programming and
delayed binding of implementations.

l There is a strong commitment to source level
debugging. As the language and compiler
evolved, special care was taken to ensure that
programs could still be reasonably debugged.

l There is sufficient runtime efficiency and access
to underlying architecture that all levels of the
system may be written in a high level language.

Around 1978, a “Tools” project was started to design
a software development environment. This project was
later merged into the Mesa project, and the user interface
portion was named Tajo (pronounced TAH-hoe). Its
design was influenced significantly by previous work of
Kay and of Swinehart [Kay69, Kay76, Swinehart74].
Below is a list of basic precepts from the 1980 Tajo
Functional Specification [Wallace80]:
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l Client programs shall not preempt the user
(Swinehart’s Law). The user should never be
forced into a situation where the only thing he
can do is interact with only one tool.

l Don‘t call us, we’ll call you (Hollywood’s Law).
A tool should arrange for Tajo to notify it when
the user wishes to communicate some event to
the tool, rather than adopt an “ask the user for
a command and execute it” model.

l The user owns the window layout. Individual
tools should make minimal assumptions about
the size and position of any windows that they
own. The procedural interface to writing on
windows should make such concerns largely
invisible to the client code.

There is another important point. By this time, the
Mesa project had moved from corporate research into a
development organization. While some of the same
designers worked on it in both places, there was now a
definite engineering flavor to the effort. Several times a
90% solution was implemented since it could be done
today, rather than wait until we understood how to
completely solve the problem.

3. User Illusion

For the use of multiple tools in multiple windows
to be most effective (for changing activities quickly and
easily), the user interface must be consistent across all
tools. The perceptions, model, and conjectures that a

user accumulates about a system are referred to as the
user illusion. The intent underlying Tajo is to create a
consistent user illusion that enables the user to predict
instinctively how to use any tool, regardless of previous
exposure to it. The principle is sometimes called the
Law of  Least Astonishment.

First a few words about the hardware. The
Dandelion has a 17 inch CRT oriented with the larger
dimension horizontal. The display image is divided into
an array of pixels 1024 across by 808 down. The image
is refreshed from a region of memory, where each pixel
of the screen corresponds to a bit in memory. Such a
display is often referred to as a bitmap display. A zero
bit in memory causes the background color to be
displayed, a one bit does the opposite. Most users run
Tajo with a white background, although changing a
parameter in the user profiie will allow white on black
operation.

There is a keyboard and a mouse with two or three
buttons. The software makes limited use of the middle
mouse button, so it is “pushed” on a two button mouse
by chording the other two buttons. The coordination of
movement of the mouse on the desk and the movement
of the cursor on the screen is done by software. There
is a process running at high priority that notices changes
in the location of the mouse and moves the cursor
correspondingly, subject to keeping the cursor on the
screen. It is possible for an application to replace this
procedure so that, for example, a drawing program can
make the cursor stay on a grid.

The Mesa language allows easy creation of multiple
parallel processes in the same address space by means of

Figure 1. Tajo Windows
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the FORK operator. This feature is heavily used in the
XDE user interface paradigm. There is a process called
the notifier process that is responsible for most user action
processing. Client programs that have a non-trivial
amount of work to do usually FORK a process to do the
actual work and return to the notifier so that the user
can do other things in parallel. There are three client
process priorities: background normal, and foreground.
The notifier runs in foreground, but client programs often
reduce their priority to normal or background while
running.

This section gives a brief description of the current
(Mesa 11.0) version of Tajo. It has two somewhat
independent goals: to describe the user interface features
(as there is no public reference I can cite, and until
recently XDE has not been widely available), and to give
insights into the language features used to implement
these features. Whenever possible, if a subsection tries
to meet both goals, the descriptive material is given first.

3.1 Windows

Interaction with the user is through windows on the
screen. A window is a rectangular area of the screen,
and may be covered with subwindows, resulting in a
window tree. Each window has a size and a position
relative to its parent. Windows at the “top level” are
children of a system supplied full-screen root window.
The data structure used for representing this tree is a
LISP-like scheme where each window points to its first
child and to its next sibling. Windows can overlap in
arbitrary ways, but the rules for visibility are easy to state
in terms of the tree structure. Windows obscure their
parents, but are clipped where they extend beyond the
dimensions of their parent. If two overlapping windows
are siblings, the one earlier in the sibling list is on top.
Figure 1 shows several tool windows. The windows of
the File Tool and the Executive are overlapping siblings,
subwindows of the File Tool are non-overlapping
siblings.

The system provides routines for adding scrollbars
to subwindows. All of the subwindows in Figure 1 have
vertical scrollbars. The scrollbar changes color when the
cursor moves into it, giving feedback on that portion of
the file currently visible. In the bottom subwindow of
the File Window, the dark grey portion of the scrollbar
indicates that the visible portion is about 40% into the
file and is about 10% of the total file size. While the
cursor is in the scrollbar region, the three mouse buttons
are used for positioning. The left means “scroll up,” the
right means “scroll down,” and the center means “thumb
to this place in the file.”

Each window is implemented by an associated
window object, which in turn is accessed by a window
handle, a pointer to this object. The object contains
information about the tree structure, this window’s
location with respect to its parent, and several procedure
variables, such as a repaint procedure that gets called
whenever a portion of the window has invalid contents.
The implementation makes use of Mesa’s opaque type
mechanism, so that client programs do not depend upon
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the actual representation of the window object. There
is, however, a procedural interface whereby client
programs can manipulate the information in the object.

Client programs can attach additional information
to windows by means of named contexts, similar to
property lists of LISP. Tools can be written to have
multiple instances, obtaining their data from the context
associated with the particular window that Tajo is
notifying (passed as a parameter to the notify procedure).
See §3.5 for further details.

3.2 Subwindow types

The user has control of the placement, overlap, and
size of top level windows; maintaining the remainder of
the window tree is the responsibility of client programs.
Consider, for example, a tool that divides its window into
two equal sized subwindows. Whenever the user changes
the size of the enclosing window, the sizes of both
subwindows and the relative origin of the second one
must change. Tajo allows the client program to register
an adjust procedure that gets called before and after the
window changes dimensions. Since adjustment strategies
are often shared by multiple window instances, a classing
scheme called window types is used. Every window has
a type, and associated with every window type is a
collection of procedures. In addition to the adjust
procedure, there is a wakeup procedure that is called
when a window first becomes visible and a sleep procedure
that is called when it will no longer be visible until
awakened.

To simplify the task of the tool writer, there are
several system-provided subwindow types, each with its
own runtime management routines. Some tools have
only one subwindow, like the file subwindow for the log
of the Executive in figure 1. Some tools have multiple
subwindows of the same type, like the two form
subwindows of the File Tool. The three most popular
types for incorporating in tools are the following:

l A message subwindow is one for giving small
amounts of feedback to the user, such as error
conditions. These windows typically have only
a few lines, and as information scrolls off the
top it is thrown away.

l A file subwindow is used by tools that want to
create a log of their operations. The client
program simply writes to the log by standard
stream operations. As characters are written to
the log, they appear on the screen and also go
into the file. The built-in management routines
take care of things like line breaks, scrolling,
window splitting, selection, etc.

l A form subwindow is the major work horse for
the interactive portion of a tool’s user interface.
These windows can contain form fields to be
filled in (with either text or numbers), choices
to be made (either by menus or one-of-many
selection on the screen), and command buttons
to be invoked with the mouse.



Client programs are welcome to define their own
unique subwindow types, and there is a predefined type
vanilla that works for many types of client managed
windows that don’t need fancy maintenance.

3.3 Tool state

When a tool has its full-sized window open on the
screen, it is said to be in an active state. This is like
having a woodworking tool out on the workbench, ready
for use. Tools that will not be needed for a while can
be shrunk to an iconic form on the screen; these tools
are in the tiny state (see figure 1). A tiny window
typically retains all window state, such as parameters that
the user has given the tool, options selected, or messages
posted by the program. In the physical metaphor, think
of tools that are placed in a tool belt, convenient for use,
but not cluttering the bench. The third state for tools is
inactive. When tools are deactivated, they disappear from
the screen entirely. By convention, they free up any
system resources that they are using, including the
previously described window state. They are, however,
added to a menu of inactive tools so that they can be
subsequently re-activated. These tools correspond to
those put back into the tool box.

The tool data contains a client supplied transition
procedure that gets called whenever the tool changes state.
System-defined subwindow types such as form
subwindows have system supplied transition strategies
that “do the right thing.” For example, file subwindows
close the backing file when the tool is deactivated.

3.4 Selection

Two mouse buttons are used for
selection. The left button, called
Point, is used to begin the selection.
When Point is depressed, the closest
character is selected (video inverted),
and the selection tracks the mouse
until the button is released. In this
sense, one should think of selection
taking place on the button’s up
transition. Units larger than a single
character are selected by multiple
clicking. If the left button is pressed
twice in rapid succession, the selection
mode becomes word-selection. Three
clicks select lines, and four clicks select the entire
document. Multiple clicks cycle through the selection
modes, so a 5-click is equivalent to a single click.

The right mouse button, called Adjust, is used to
extend or contract the selection. Pressing Adjust causes
the closest end of the current selection to move to the
cursor position, subject to selection mode constraints (e.g.,
to the end of the current word if in word mode). As
with Point, the selection tracks the cursor and “commits”
on the up transition. There is one subtle, but quite
useful addition. If the down transition of Adjust occurs
when the cursor is over the last (or first) character of the
selection, the selection mode reverts to character for
extension purposes.
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Other selection schemes have been tried and
discarded. They include draw-through selection and
separate character and word select buttons. Other
indications of selection were tried as well, including
underlining the selection and drawing a box around it.

There is a single global selection in the environment.
Client programs that wish to deal with the current
selection do so by calling a system interface Selection.
Such clients fall into two different classes. The most
common are those that wish to obtain the value of the
current selection. This is done by calling the procedure
Convert. This procedure takes a parameter describing
what the client wants to know about the selection, e.g.,
its value as a string, its position within a file, the window
containing it, or its value parsed as a number. The most
common target is a string. For very long selections,
copying the text to a string would be inefficient. In this
case, Convert will refuse to return a string, and the
client can ask for a source, a stream-like data structure
that allows sequential access to the characters of the
selection.

The other class of clients that deal with the selection
are those who want to manage the current selection. This
is done by calling the procedure Set, giving it two
procedures: one that gets called when the global function
Convert is called, and the other that gets called for
various actions like un-highlighting the text when the
selection changes. For most text selection, the calls to
Set are at a level of abstraction far below that seen by
typical client programs. An example of a client program
where the programmer explicitly calls Set is a graphics
editor where the client wants to make selected text in its
window available to another tools that read the current
selection.

One more subtle point on selection-when a client
program is the manager of the selection, its conversion
procedure need not support all of the potential target
types defined in the interface. The conversion procedure
is welcome to return NIL for any (or all) types. In the
graphics editor example, the “position in the file” would
have to be a two dimensional quantity rather than the
scalar quantity it is for text files, so the editor would
return NIL.

3.5 Keyboard

There is the concept of a global input focus in Tajo.
This focus is associated with a particular subwindow.
The input focus typically goes with the current selection,
but the user interface provides a means for setting it
independently. Within the subwindow there is an
insertion point which falls between two characters. When
the selection is moved, the insertion moves to the end of
the new selection (character, word, line, document)
closest to the position of the mouse when the mouse
button Point is released. For example, clicking 3 times
in the first half of a line selects the line and moves the
insertion to the beginning of the line. The user profile
can specify options that change the tracking of the
insertion point, e.g., to always place the insertion at the
end of the selection (as opposed to the beginning).



. . .
If a client program thinks of the keyboard as an

ASCII input device, it can call a system procedure to
associate a string input procedure with any of its
subwindows. Whenever a character key is typed and
that subwindow has the input focus, the procedure will
be called. There are three keys that bear further
discussion. The Stuff key simulates type-in of all of the
characters of the current selection. The Copy key works
as follows: when Copy goes down, the current selection
is cleared. The user now makes a new selection-the
tracking of the insertion point is disabled during the
selection. When Copy goes up, this new selection is
stuffed into the insertion point. The Move key works
like Copy except it simulates a Delete after the copy
has been done.

Being called with type-in is certainly consistent with
the “Don’t call us, we’ll call you” philosophy described
in §2.2, but some programs would rather ask for
characters than be told about them. Such programs are
usually transliterated from traditional timesharing
environments where the program worked on the model
that it owned the whole virtual machine (and the user as
well). This style of interaction is supported by teletype
subwindows, another system supplied subwindow type.
These supply an abstraction similar to that of file
subwindows, but with the requisite input/output model.
The only subtlety is that when the client program is
started, it must be careful not to read characters before
it FORKS itself a process separate from the notifier.

Some client programs wish to give non-standard
interpretations to the keyboard or mouse. The rest of
this section describes the low level interfaces to user
input. The keyboard of the Dandelion is non-encoded;
there is a region of memory from which a program can
read the current up/down state of each key. Very few
applications deal with the keyboard at this level; they
use a facility called TIP (for terminal interface package).
At the heart of this package is a collection of TIP tables,
descriptions of desired operations for specified user
actions. These tables are associated with windows in a
tree structure.

. . .

A high priority process watches the hardware for
user actions. These actions are then enqueued along with
their times of occurrence in a user action queue. A user
level process, the notifier, removes these actions and
matches them against the proper TIP tables.

If it finds the action, it passes the corresponding
operations to that window’s associated notify procedure.
Some user events, such as most keystrokes, are for the
window that currently has the input focus. Other events,
such as most mouse button clicks, are directed to the
window that contains the cursor.

A TIP table looks like a large SELECT statement with
user actions as the selector arms. There are two classes
of actions that can appear: TRIGGER actions refer to
actions that are removed from the user action queue,
such as a key going down or up, ENABLE actions
interrogate the current state of the user interface, such as
a shift key being down. If a left-side is matched, the
notify procedure is called with the list of result items on
the right-side. For example, the fragment

SELECT TRIGGER FROM

I Down WHILE COMMAND Down =>
InvertScreen;

sends a single
procedure. To

atom, InvertScreen, to the
get slightly ahead of ourselves, the

notify
line

Z Down WHILE COMMAND Down => Menu,
“Window Mgr”, Zoom;

sends two atoms, Menu and Zoom, and a string. This
is part of a TIP table for a program that turns keystrokes
into menu item activations. Menus are described in §3.6.

A more complicated example deals with the left
mouse button going down. In this example, it could be
part of a single or double click, or part of a chord
simulating the middle button.

SELECT   TRIGGER   FROM
. . .
Point Down =>

SELECT    TRIGGER  FROM
Point Up BEFORE 200 AND Point Down

BEFORE 200 =>
SELECT    ENABLE    FROM

LeftShift Down => COORDS,
ShiftedDoubleclick;

ENDCASE => COORDS,
NormalDoubleclick;

Adjust Down BEFORE 300 =>
MenuDown;

ENDCASE => COORDS, SimpleClick;

An item in the result list (right-side) for an action is
a variant record whose variant has one of the following
types:

l A character corresponding to the key most
recently pressed.

l The coordinates of the mouse (COORDS in the
example).

l The full state of the keyboard.
l An atom.
l A number.
l A string.
l The time, in processor clock ticks, of the event.

3.6 Menus

Another means for user
interaction is via menus. Rather than
have a single large menu, there are
several menus available at any time,
determined by the subwindow that
contains the cursor. System supplied
subwindow types have their own sets
of menus, such as a text operations
menu for a typescript subwindow.
The set of available menus is obtained
by depressing the middle button on
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the mouse. Menus are stacked in such a way that the
user can either invoke a menu item from the top menu
or cause another menu to come on top.

From the programmer’s standpoint, menus are easy
to construct. There is a system procedure that is given
a window handle and an array of <STRING, PROCEDURE>
pairs. The strings become the menu items, and the
corresponding procedure is called whenever the user
selects that item. The system procedure returns a menu
handle which can then be associated by other system
procedures with one or more subwindows.

3.7 Symbiotes

Menus can provide many commands without
requiring the user to remember the exact command
names. However, for frequently used operations, it is
cumbersome to remember which menu contains the
desired command, bring it to the front, and select the
item. One solution to this problem is symbiote
subwindows. They appear at the top of other windows
and contain a list of identifiers. When the user clicks
the mouse button on one of these identifiers, the symbiote
handler searches through all the item names from the
collection of menus on the other subwindows of their
window. If it finds a match, it calls the corresponding
procedure. The TIP example in §3.5 shows how, with
the. proper notify procedure, one could also turn
keystrokes into menu activations.

4. Programming Tools

The previous section described the user illusion of
XDE; this section describes some of the Mesa program
development tools that made it possible to develop such
an environment. The major thrust of this section is that
the various tools are highly interrelated; each one either
produces extra information for use by others or makes
use of such information.

4.1 Runtime loader

The runtime loader is technically not a programming
tool, but rather a part of the Pilot operating system
kernel. Nevertheless, in order to understand the other
programming tools, some knowledge of the runtime
loader is needed.

A Mesa object program has, in addition to code, a
header that specifies a list of interfaces that are imported
or exported. These interfaces are the “glue” that holds
modules together into larger programs. The binder
specification language and operation are described in
detail in the language manual [Mitchell79] and a paper
by Lauer and Satterthwaite [Lauer79]. The runtime
loader maintains a database of all interfaces imported

and exported by programs now loaded (either part of the
original boot file, or previously runtime-loaded). Loading
a new module is a three step process:

1. Move the code from the object file into virtual
memory and allocate space for the global frame
of the module.

2. For all interfaces imported by this program, see
if there is something already loaded that exports
the desired items.

3. For all interfaces exported by this program, see
if there is something already loaded that wishes
to import any items exported.

Mesa does not restrict the programmer to have a
single implementation module for a given interface, so it
is possible for step 2 or 3 to only partially satisfy the
import needs for an interface.

Note that the loader is capable of many of the tasks
typically associated with the linkage editor of a more
batch oriented system. Indeed, small multi-module
systems are sometimes tested by simply loading the
various modules. Large or publicly distributed systems
are almost always bound together by the Binder described
in §4.3.

Object programs also contain a list of control
modules. Many Mesa modules are simply collections of
procedures, but some contain mainline code as well.
When a program is run, its control modules have their
mainline code executed in the order specified when the
object program was created. In keeping with the Tajo
design principles, most programs either create windows
for interaction or register commands with the Executive
(or both) and then simply return.

Once a program is loaded, it usually stays around
forever (or until the next boot, which may be a week or
two away). There is, however, an unloader that goes
through the three steps in the reverse order. Thus it is
possible to load two highly interconnected modules,
decide that one is buggy, unload it, make repairs, load
the new one, and have the interconnections now properly
made to the new module.

4.2 Compiler

The Mesa compiler is organized into multiple passes.
This is partly to simplify dealing with a language that
allows forward references, and partly because the initial
implementation was on the Alto with a small memory.
The first pass is a table driven LALR parser with semantic
routines that construct an abstract syntax tree in virtual
memory. Later passes decorate the tree, and eventually
generate machine code as part of the object file. The
code is for a stack architecture [Johnsson82] that is in
turn implemented in microcode on the Dandelion. All
jump instructions in this architecture are relative to the
program counter, so the code requires no relocation by
the loader. There is no separate assembler; all levels of
the system are written in Mesa.

The unit of compilation is the Mesa MODULE. This
is typically a collection of procedure declarations,
together with global variable declarations, and sometimes
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a small amount of mainline code. At the beginning of
the source program, there is a declaration of those
interfaces that are imported or exported by this module.
As mentioned in §4.1, the compiler must produce a
header on the object file that provides this import/export
information to the loader.

The code and the binding information are all that
are really needed for execution of a module. However,
additional information is needed to support source-level
debugging. The Mesa compiler writes out most of the
compile-time symbol table for use by the debugger and
performance tools. Unlike some published symbol table
structures [Graham79], the Mesa symbol tables are
organized in such a way that no information useful to
debugging is destroyed in the compilation process.

The compiler also provides a source-to-object
mapping facility. The symbol table contains a body table,
which contains an entry for each procedure body or
BEGIN...END block containing declarations. These
entries are linked together into a tree structure showing
the nesting relationship of the source program. Each
entry in turn is associated with a piece of the fine grain
table, a table that tells the program counter value
associated with the first instruction of each statement of
the source program. The exact representation of this
table underwent significant changes in 1981 when
allowances were made for the Packager (see §4.5).

What about optimization? In a nutshell, the Mesa
compiler doesn’t do a lot of optimization that rearranges
the order of execution; when it does destroy the ability
to do source/object mapping, it tries to arrange things so
that the debugger can give the user feedback that this
has happened. This is an example of a “90% solution.”
Being able to set source breakpoints is such a powerful
capability, and works such a high portion of the time,
that the users are willing to say “darn” in the few cases
where it doesn’t work, as long as the debugger is capable
of determining these cases. (They have been known to
say stronger things in the few cases where the debugger
can’t determine what’s going on). The compiler/
debugger collaboration does an admirable job, but new
ideas [Zellweger84] would allow it to do an even better
one.

The Mesa language contains two classes of modules:
PROGRAM and DEFINITIONS. The later class is used for
defining interfaces and for sharing type definitions among
several PROGRAM modules. When a DEFINITIONS
module is compiled, its object file contains no executable
code, but contains a symbol table like that produced for
debugging a PROGRAM module. These tables are used
to implement the included symbol capability of the
language. For example, suppose module A obtains type
definitions from interface B. When compiling A, the
compiler opens the object file for B and copies
information from the symbol table therein.

4.3 Binder

The output of the compiler is an object file
containing the code for a single module. For many
reasons, interesting programs are made up of more than

one module. While the runtime loader is capable of
linking together separately loaded modules, most medium
to large systems are distributed as a single object file put
together by a separate program called the Binder. This
is done for several reasons, some more obvious than
others.

l   It is a lot easier to keep track of one file instead
of 50, particularly given Mesa’s strict type
checking of interfaces.

l   Resolving the linkage between modules is a time
consuming process, so if all internal
interconnections can be resolved by the Binder,
the loader need only take time to resolve
external linkage requirements.
Packages can be shared among several
applications more easily if bound together in
convenient sized pieces.

l   Interfaces can be obscured from other programs
by binding the modules exporting them into a
larger configuration that does not export that
interface.

l  The symbol table and debugging information
produced by the compiler occupy a lot of space.
The Binder need not copy this into the new
object file, but need only change the header of
the new object file to point back to the compiler
output files. Optionally, all of this information
can be copied into a new “symbols” file.

The input to the binder is a configuration description
that contains a list of object files to be combined into a
larger object file. It also contains a list of what is to be
imported and exported by the new file, as well as optional
information directing how the internal bindings are to be
done. The language manual [Mitchell79] contains the
syntax for the configuration description language.

Our original design (and each subsequent
implementation) of the Binder provides complete control
of binding, with several ways for the programmer to deal
with multiple implementors of interface items. In the
intervening six years, we have had very few configuration
descriptions other than lists of object file names, which
means “bind them together in the only way possible.”
Almost all of the complicated descriptions could be
replaced by suitably staged sequential executions of the
Binder on simple configuration descriptions.

4.4 Debugger

Mesa has a full-function source-level debugger that
is used for debugging all levels of the system, including
the operating system kernel. The debugger uses the
symbol table and statement mapping information
produced by the compiler. Its features include the
following:

l The ability to set breakpoints. To set a
breakpoint, the user loads the source file into a
window, selects a place in the file, and executes
a SetBreak menu command. As feedback,
the debugger changes the selection to be the
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first character of the statement where the
breakpoint is set. If the source file is not
available, but the symbols are, the user can still
set a breakpoint at the entry or exit of any
procedure by typing its name to the debugger
command interpreter.

l The ability to interrupt a running program and
find the context of any process running at the
time of interruption. Equally important, it is
possible to resume execution of a program
interrupted in this fashion.

l The ability to walk up the links of the dynamic
call chain, answering the question “Who called
whom.”

l The ability to examine and modify data in the
client program. The debugger has an interpreter
for the full expression syntax of the language.
Since Mesa is strongly typed, the interpreter can
use type information to print out the values in
a more understandable fashion. Numeric types
print as numbers, enumerated ones as the
proper named value, and records print out as a
list of field names, each with its value printed
according to type.

l The ability to call procedures in the client
program, type checking the actual arguments
against the types of the formal parameters.

The Mesa debugger evolved from the Alto
implementation and still uses the world swap principle
[Lampson79] for insulating the debugger from the client
code. There are several advantages to this scheme: one
can set breakpoints down in the bowels of the operating
system or in interrupt routines. There are also several
disadvantages, of which the primary one is speed. When
the Alto swapped its 128K-byte worlds, it took between
3 and 4 seconds. The Dandelion has a faster disk, but
with the 768K bytes of a typical programmer workstation,
it takes l0-15 seconds for the swap. Things get even
worse with larger memories; the Dandelion will hold 1.5
megabytes on the standard memory cards.

One solution to this problem is teledebugging. The
debugger’s path to the client world is through a rather
narrow interface. The routines that read the memory
from the world “swapped” on the disk can be replaced
with ones that talk to other machines on the Ethernet.
Coupled with a small teledebug nub in the client code,
these routines give essentially instantaneous turnaround.
The client computer need not be geographically nearby,
either; an implementor in Palo Alto can debug a program
running on a machine in London.

4.5 Packager

The Pilot operating system supports a demand paged
virtual memory. It also allows the programmer to specify
swap units so that when a particular page must be
swapped in, the operating system makes an effort to
bring in its entire swap unit.

When the compiler generates code for a module, it
puts the code for the various procedures into a contiguous

set of pages in the output file (interspersed with readonly
constants). When the program is loaded by the runtime
loader, these file pages are mapped into virtual memory.
The default swap unit for code is to swap the code for
the entire module as a unit.

Procedures are often collected in the same module
because they work on the same abstraction, or because
they share common private definitions and data. It is
often the case that some of the procedures of the module
are used only for initialization, or that some procedure
in module A is tightly coupled with another procedure
in module B. The Packager is a tool that allows the
programmer to associate procedures of a collection of
modules into explicit swap units. It corresponds very
much to the Chinese restaurant stereotype of “one from
column A, two from column B.”

The packager takes two files as input, one is Binder
output, the other a packaging description. A packaging
description is a sequence of swap unit descriptions. Each
swap unit contains a list of modules and procedures from
those modules. This is a considerable simplification,
since an explicit list is only one of about nine ways
supported for specifying the procedures in a swap unit.
For example, one could specify “all procedures of M not
already placed in swap units named A and B.”

Recall that the source level debugging relies on
compiler output tables that give a source/object mapping.
These tables, together with the symbol tables take up lots
of room; they sometimes account for 80% of the bulk of
a compiler output object file. We did not want for the
Packager to have to rewrite that information.
Considerable care went into the redesign of the
source/object mapping tables produced by the compiler
to make them independent of the eventual entry point
location of the procedures once they have been packaged.

4.6 Performance Tools

The packager discussed above is the easier half of
an important problem, that of reducing working set size;
the more difficult half is that of determining what the
swap units should be. We have a number of tools in
XDE to aid in answering this and other interesting
questions. Indeed, a principal conclusion of Knuth’s
FORTRAN study [Knuth71] was that programmers should
have and use more data about the runtime performance
of their programs. The set of performance tools includes
the following:

l Spy - a program that wakes up periodically (at
interrupt level) and records the execution
context of a given process (or set of processes)
[McDaniel82].

l PerfPackage - a tool that allows the programmer
to define a set of nodes in a running program,
using the standard machinery for setting
breakpoints. A set of legs, defined by pairs of
nodes can also be defined. The PerfPackage
replaces the breakpoint handler with one that
counts the number of times that each node is
visited, as well as the average time spent on
each of the legs.
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l Transfer counting tools-several tools to note
all interesting control transfers (procedure calls
and returns), and present various statistics about
them.

l Page fault analysis tools-tools to record and
present data about page fault behavior.

These tools all rely heavily on the source-level
debugging information produced by the compiler to
present their results in the most usable format. The Spy
is an interesting example. One can first see in which
modules a program is spending its time. Then for a set
of modules, one can get statistics about the most
time-consuming procedures. Finally, statistics can be
collected at the statement level. Since the Spy works on
a sampling principle, it is sometimes useful to switch to
the PerfPackage to obtain exact statistics at the statement
level.

4.7 Consistent Compilation Tools

The Mesa compiler chooses to paint RECORD types
with the 48 bit version stamp of the object file of the
module in which they are defined, typically an interface
module. Thus if procedures in program modules X and
Y both reference a record type from interface A, then X
and Y need to be recompiled whenever A is. This leads
to compilation dependencies determined by the include
relationships of a collection of programs. A tool called
the IncludeChecker tries to deal with these problems. Its
original goal was to take a collection of modules and
determine whether they were consistent with respect to
versions of the various interfaces holding them together.
It has grown to where it can be pointed at the current
version of a program and told to create the sequence of
Compiler and Binder command lines necessary to make
a new one. It is similar to the UNIX™ program Make
[Feldman79], but differs in at least two ways: it only
cares about compilation and binding dependencies, and
it determines these dependencies automatically from
information in the object file.

An earlier, more ambitious, tool worked on the
following premise: if, in the example above, the changes
to A were in areas unused by X and Y, then they need
not be actually recompiled, but merely updated to refer
to the new version of A. Such a tool requires some care
on the part of the Compiler to leave behind a suitable
“audit trail” so that the later tool can determine exactly
what was used from a given included module. This tool
was not a success, quite possibly because it also tried to
deal with the problem of an inadequate disk on the Alto
workstation, and had the unfortunate side effect of
sometimes deleting the only copy of the software that it
was trying to make consistent.

5. Other useful tools

The tools described in §4 are a representative sample
of those that are heavily integrated with the Mesa
language. There are a number of other tools that run in
the environment that are valuable for program

development, but are not as language specific. This
section gives a brief description of some of them with
some motivation for why they came into existence.

5.1 Database tools

A system like XDE or Star involves a huge number
of files, over 5000 for XDE alone. The version stamp
system used for insuring consistency makes it critical that
a programmer be able to find precisely the right version
of each file used. A rather complete discussion of this
problem can be found in Lewis’s paper on software
version control [Lewis83]. This section briefly describes
two tools that aid in this process: DFTool and Fetch.
It also describes two tools used for more general database
applications: Access and Adobe.

Most programmer workstations have limited capacity
local disks, typically 40 megabytes. For this reason,
programmers spend a lot of time shipping files to and
from file servers, where the “truth” resides. A program
called DFTool is very helpful in minimizing the number
of files that have to be actually transferred. The version
for XDE is an outgrowth of Eric Schmidt’s thesis work
[Schmidt82] as modified by Brian Lewis [Lewis83]. This
tool manipulates a collection of text files called DF files,
which in turn describe collections of other files. It is
best to think of a DF file as a snapshot of a given system
or piece of a system. It lists the files that make up the
system, complete with creation time and file server
“home,” and also lists those files that are needed from
other DF files in order to recreate the system from the
source. There are three major operations provided by
DFTool. The operation Bringover retrieves the files from
the server if they are not already on the local disk. The
operation SModel stores any changed files onto the server
and updates the DF file to reflect this. The operation
VerifyDF analyzes the programs listed in the DF file and
determines that they are consistent, and that all system
files necessary for their recompilation are listed in the
DF file.

In order to set source breakpoints and examine
variables by name, the programmer must have the proper
version of the symbolic information on his personal
workstation. For the particular tool under development,
this is easy, since the pieces were probably compiled
there. For the files that are part of the released system,
the problem is harder; the organization of the archive
directory is designed to aid in the development process,
not to simplify retrieval. For example, one might not
necessarily think to look for the interface BcdDefs on
the subdirectory <Apilot>11.0>Mesa>Friends>.
There is a program called Fetch that greatly simplifies
this process. As part of the release process, a text file is
produced that gives the home of each file in the release,
both its subdirectory and its DF file. A fetch service is
run on a server machine with a slightly predigested
version of this directory file. Individual programmers
run Fetch which communicates over the network with
the service. To obtain a copy of a file from the release.
the programmer simply selects the name of the file and
uses a menu to retrieve it (source, object, or both).
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In a system with multiple implementors, it is
important that no two persons be modifying the same
file at once. To protect against this problem, XDE has
a program librarian. The librarian runs as an Ethernet
service that allows the programmer to check in and out
tokens called libjects One or more files can be associated
with a given libject, typically either DF files or Mesa
source and object files. The programmer checks out a
libject by running a program called Access. A reason
for the checkout must be supplied. It is recorded (and
optionally logged) in the librarian database. The default
operation of Access is to also retrieve the associated
file from whatever file server holds it. If the file is
already checked out, the programmer is told the current
holder’s name and reason for having the file. There is a
corresponding check in procedure that stores the file back
on the server. Some libjects with no associated files are
used by other programs for mutual exclusion.

Reasonably early in the lifetime of Mesa it became
clear that something had to be done to keep track of bug
reports, wishes, tasks, etc. A program called Adobe is
the outgrowth of this need. While it started life as a
bug-tracking tool, it now is a fairly general database. It
is, in fact, a whole family of databases, called Adobe
systems, all managed by a collection of tools that together
make up Adobe. For a given system, there is a collection
of typed fields that make up records. There are
provisions for inverting the database on various fields to
allow query operations, and user definable templates for
generating reports. The records can be individually
checked out, or locked for writing. In the case of bug
reports, a maintainer will check out the bug report, fix
the bug, and then check it back in.

5.2 Distributed computing tools

Although each programmer has a rather powerful
workstation, XDE is very much a distributed
environment. File servers are used for several good
reasons: to share information, to gather together
consistent snapshots, and to provide a backup in case
(shudder) one’s local disk crashes irretrievably. While
the DFTooI is useful for maintaining systems, casual
access to remote file servers is done by a tool called the
FileTool. Like many XDE tools, FileTool provides
two user interfaces. One is a “two dimensional” one
with forms to fill in and buttons to push (see Figure 1).
The other is a “one dimensional” one that is accessed via
the Executive window. This interface parses command
lines into commands and parameters. The latter interface
is the more useful with command files and batch
processing (although most command files for building
tools use the executive interface to DFTool instead).

A tool called Chat allows the user to create one or
more windows on the screen that act as “glass teletypes”
for interaction with other machine. There are options in
Chat to emulate most of the popular smart terminals.
A particularly useful application of Chat is in
conjunction with a program called RemoteExec. This
is a version of the Executive that replaces the input and
output streams with ones that talk to a remotely
connected computer. This allows a number of

workstations, typically ones with more memory or larger
disks, to be shared by several users. These compute
servers can, for example, be used for large batch
compilations without slowing down the programmer’s
personal workstation. Another use of RemoteExec is
to allow the programmer to run programs on his personal
workstation from any remote terminal, say one at home.

Electronic mail plays a major role in the
development process at Xerox. Before programmers
would give up their Alto workstations and move to XDE,
it was necessary to provide access to mail, based on the
Grapevine system [Birrell82]. The Alto based mail
reading program was named Laurel, in keeping with
PARC’s affection for names from the Sunset Western
Garden Book. The XDE version was whimsically named
Hardy. Like its predecessor, Hardy provides multiple
subwindows: a table of contents subwindow with the
sender and subject of each message received, a command
subwindow with buttons for the various operations, and
a text subwindow where the messages are actually read.
As the old 3 megabit research network is being phased
out of operation, the PUP based Grapevine protocols are
being replaced by more modern protocols on the 10
megabit network, and Hardy is being replaced by a
similar program named MailTool.

5.3 Shortcuts

Mesa programmers tend to use rather long identifiers
in their programs. The compiler doesn’t limit the length,
and with proper capitalization, this can help to make
programs somewhat self documenting (at least that’s one
of the excuses I get from programmers that don’t use
comments in their programs). Also, some of the
keywords are long and must be capitalized properly as
well. XDE has a built-in abbreviation definition and
expansion capability where the programmer can type a
unambiguous prefix and hit the Expand key. The
recently typed text is scanned backward to pick up a
token which, if found in the dictionary, is replaced by
the expansion. Hitting Expand with Shift down causes
a window to open up where the user can define a new
abbreviation.

6. User supplied “Hacks”

There is a definite positive feedback effect from
having the developers of a system rely on it for their
day-to-day existence, particularly in a system as open and
extensible as XDE. In the early days, when an
implementor wrote a small program that enhanced his
productivity there was a natural tendency to share it with
his friends. Such “neat hacks” often were included in
the next official release of the system. The symbiote
package described in §3.7 started life this way.

We reached the point where the producers and users
of this ancillary software were no longer housed in the
same comer of a single building, but were spread across
the continent (even a few on other continents). In this
situation, a degree of order was called for. The directory
<Hacks> on one of the file servers was changed from a
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private Mesa group directory into a public one, and a set
of rules was established to govern the use of this
directory. Here are some of the rules from the most
recent set [Johnsson83]:

l A “hack” is a useful (or semi-useful) program
that is made available to the general community
as a public service. No warranty of suitability
or responsibility for errors is implied by the
author.

l A hack stored on the <Hacks> directory remains
the “property” of the submitter. Others may
not make modifications (except for their own
private use) without negotiating with the owner
(who may already be making similar or
incompatible modifications).

l As the owner of a hack, you are not required
to fix bugs, but you must be willing to transfer
ownership (permanently!) to someone who
volunteers to fix them.

l Hacks that are derived from released software
should be announced to the public only after
discussion with the organization or individual
responsible for that released software.

l Every hack stored on the <Hacks> directory
will also have documentation and all sources
necessary to rebuild it stored on the <Hacks>
directory.

l Testing is important. A hack is not shoddy
software; it is software made available outside
the regular release channels.

These rules have proved quite successful; at last
count there were over 200 programs stored on the
<Hacks> directory. The programs can be roughly divided
into four categories:

l  Modified versions of official tools, with added
functionality. These new features are often
incorporated into the official versions at the next
release.

l  Extensions to the environment. These include
adding new keyboard commands (made easier
by the TIP mechanism),  changing the
appearance of tiny windows, and changing the
semantics of scrollbars.

l  Generally useful tools. For example, there is a
calendar program, several graphics editors, a
spreadsheet, a tool for browsing files on remote
directories, etc.

l  Fun and games. This includes a program to
play music on the tone generator of the
keyboard, several arcade-like games, and
MazeWar, a multi-player seek-and-destroy game
played over the network.

7. Conclusions

Reflecting on the 5 year (or 10, depending on how
you count) history of XDE, I am struck by a number of
things that we seemed to get right. Of course, there have

been ideas that didn’t work out, but first consider the
successes.

One major success is a consistent user interface
across tools, particularly since this was done by seduction,
not by fiat. The interface building support provided by
the system, e.g., the form subwindow package, has been
sufficiently powerful and easy to use that programmers
seldom consider implementing their own. As one who
has used four similar but different interfaces at once, I
can attest that it is easier to use radically different
interfaces than it is to use almost identical ones.

There is also a consistency at the program level. A
tool can share information with another through the
selection mechanism without any knowledge of how the
other tool works. The same scrollbar mechanism can
scroll text subwindows, form subwindows, or graphics
editor windows. There are many other examples. The
hierarchies of abstraction and information hiding ability
of the Mesa language were invaluable for creating this
support.

Another success is a balance of novice and expert
features. While it is an admirable goal to make a system
easy to learn, it should not be done at the expense of
making it clumsy for the expert to get work done. There
are several examples of this principle. For example,
many tools have both TTY style interfaces and form
subwindow interfaces. The former are quick, but require
the user to know the proper command syntax and
switches; the latter show all the options clearly, but are
more clumsy for quick use. Another example is the
window manager accelerators. There is a menu for
changing the size and position of windows, but clicking
the proper mouse buttons in the black stripe at the top
of the window will also invoke these operations.

It is difficult to overstate the value of multiple
processes. For many tasks such as compiling, retrieving
files, or printing, the user is not in that much of a hurry;
he has plenty of things to do, such as editing, that don’t
require much processing power. When we got to Mesa
8.0, we felt that we were moving back to personal
timesharing, which differed from classical timesharing in
that all the users were the same person. The user could
control the “load average” by choosing to do more or
fewer things at once. While parallelism at this
macroscopic level was invaluable, so was the ability to
have multiple processes within a single address space.
This was particularly true for communications, or
animated display applications like histograms of activity.

The environment has almost always had adequate
performance. This is largely a result of the evolutionary
way in which it has developed. We have gone through
cycles where new features are added, slowing things down
in the process, followed by periods of tuning, where little
functionality is added, but performance is improved.

If I had to pick a language feature that was most
critical to the implementation of XDE it would be the
procedure variable. Virtually all abstractions are
represented by objects (records) that contain several
procedure variables that implement the operations on
that object. Sometimes another level of indirection is
used and whole classes of objects share a single record
of procedures. Inserting a private procedure that does
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something special before calling the standard procedure
is a technique that has been exploited many times to try
out new ideas or to extend the system.

It is ironic that some of our successes have produced
some of our largest shortcomings. The Alto, on which
we first implemented Mesa, was a very modest machine
with only 16 bits of address space and no hardware
support for virtual memory. We nonetheless
implemented a compiler for a large language that ran on
the Alto with respectable performance. This was done
by carefully tailoring the data structures and algorithms
to fit into the restricted space. As machines became
larger, the data structures could not gracefully grow, so
the current compiler still limits program size to about
1000 lines. The Mesa language itself has not been
immune from this type of premature optimization. The
two classes of pointers (short and long) in the language
are largely an artifact of the original Alto implementation.
The treatment of OPEN as substitution by name was partly
motivated by the need to live with relocating storage
management schemes on the Alto.

Another example of the inability to scale is in the
world swap debugger. Programs run better with more
memory, but world swaps take longer. Viewed in the
development/tuning cycle described above, the added
functionality (more memory) has necessitated
performance work (changing the debugger paradigm).
There are plans for a “same world” debugger.

Another class of shortcomings could be loosely called
parochialism. Much benefit has been gained by having
a single language system, and when we started, almost
nothing similar was available from outside anyway. As
the rest of the world gets bitmap displays and mice, many
interesting applications will appear written in other
languages. Work is underway to add a number of
common programming languages to the environment. In
addition, the current program of placing this environment
in a number of major universities will likely lead to other
extensions.
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